

Congreso de Confiabilidad

Madrid, 22 de noviembre de 2017. Universidad Europea de Madrid

REACTION TIME EVALUATION FOR EVENTS GOVERNED BY WEAR OUT PROCESSES

Juan Antonio Sánchez Lantarón Aircraft Safety Engineer – Airbus Defence and Space

XIX Congreso de Confiabilidad

Continued Airworthiness Process

- Continued Airworthiness definition (ICAO)
- European regulations:
 - Collection and analysis of Data
 - Report of occurrences
 - Investigate the reason for the deficiency
 - Corrective Actions and Reaction Time
 - Airworthiness Directive (AD)

- Main Purpose of this GM is:
 - To define basic principles to be considered to maintain an adequate level of airworthiness risk after a defect detection
 - To define the criteria to asses the residual increase in risk and to limit it to an appropriate small fraction of the aircraft life
 - Reaction Time Evaluation

- Reaction Time Evaluation
 - Failure modelization based on exponential distribution (λ = Cte)
 - Boundary areas proposed for CAT Failure Conditions
 - Risk Allowance

 \sum (*Campaign Risk*) × (*Exposure Time*) < *K*

• Upper Boundary \Rightarrow 2E-6 / FH

- Risk Allowance
 - A/C CAT events due to airworthiness reasons: 1E-07/FH
 - Acceptable through life risk of an A/C: ¼ of the A/C life
 - 10 Emergency periods along the life of an individual A/C

$$K = 1 \cdot 10^{-7} \cdot \frac{25}{100} \cdot \frac{1}{10} \cdot 30.000 = 7, 5 \cdot 10^{-5}$$

[Risk allowance evaluated for an A/C life of 30.000 FH]

• Risk Allowance: Graphic Interpretation for Random Failures

 $(Campaign Risk) \times (Exposure Time) < 7, 5 \cdot 10^{-5}$

• Risk Allowance: Graphic Interpretation for Random Failures

 $(Campaign Risk) \times (Exposure Time) < 7, 5 \cdot 10^{-5}$

• Risk Allowance: Graphic Interpretation for Random Failures

 $(Campaign Risk) \times (Exposure Time) < 7, 5 \cdot 10^{-5}$

Alternative Methodology

Campaign Risk for Wear Out failure modes

Alternative Methodology

Campaign Risk for Wear Out failure modes

 \sum (*Campaign Risk*) × (*Exposure Time*) < 7, 5 · 10⁻⁵

- Engine equipment failure
 - Weibull approach: β = 2,9 η = 470 FH
 - Campaign Risk: Two engine Failure During Take Off

Time Reference	Esiluro Poto	Average Campaign	Time Frame	Total Cumulative]	
[FH]	[1/FH]	Risk [1/FH]	Risk [-]	Risk [-]		
20	1,51E-05	1,55E-13			J	
160	7,87E-04	6,69E-10			⇒	Average Campaig above Catastroph objective (1E-9
180	9,84E-04	1,07E-09	2,14E-08	2,14E-08		
300	2,60E-03	8,06E-09	1,61E-07	5,44E-07		
400	4,49E-03	2,48E-08	4,95E-07	2,24E-06		
500	6,86E-03	5,89E-08	1,18E-06	6,59E-06		
600	9,69E-03	1,19E-07	2,38E-06	1,58E-05	1	
800	1,67E-02	3,61E-07	7,22E-06	6,31E-05	[Total cumulative F below Risk Allow 7,5E-5
820	1,75E-02	3,97E-07	7,94E-06	7,10E-05		
<mark>84</mark> 0	1,84E-02	4,35E-07	8,71E-06	7,97E-05		
1240	3,85E-02	1,94E-06				Average Campaig
1260	3,97E-02	2,06E-06				

gn Risk ic safety 9/FH)

Risk just ance of

ign Risk it of 2E-06/FH

Alternative Methodology

Campaign Risk for Wear Out failure modes

 \sum (*Campaign Risk*) × (*Exposure Time*) < 7, 5 · 10⁻⁵

- AMC/GM Part 21 provides guidelines to evaluate the reaction time for random failures with constant failure rates.
- This study presents an alternative to the evaluation of the reaction time for failures ruled out by wear out processes
- This new methodology let:
 - Being more precise with the evaluation of the time to impose corrective actions
 - Minimizing the disturbance to the operator
 - Ensuring a minimum level of Airworthiness

