Madrid. 23 y 24 de noviembre de 2016

Organiza:

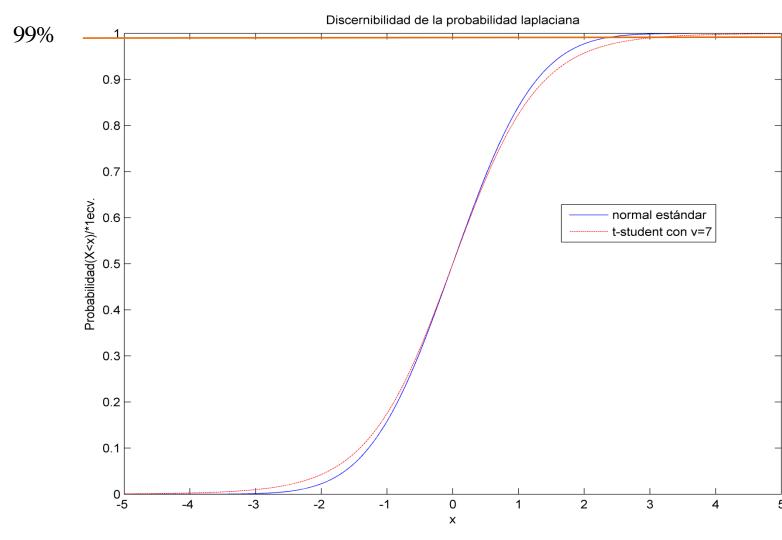
Alternativas expresivas a la probabilidad laplaciana en confiabilidad

Antonio Fernández Fernández. ETSIST, UPM

La Probabilidad laplaciana

$$P(A) = \lim_{n \to \infty} \frac{\# veces \, que \, ocurre \, 'A' en \, n \, repeticiones \, del \, experimento}{n}$$

Dominio: $P(A) \in [0,1]$


- ✓ Valores próximos a 0 o 1 difíciles de discernir en gráficas.
- ✓ Mala precisión aritmética en coma flotante para valores próximos a 1

Inconvenientes:

✓ Los modelos aditivos o multiplicativos de difusión se salen del dominio

✓ El número de nueves

- ✓ La oportunidad
- ✓ El logaritmo de la oportunidad

El número de nueves

Ejemplo:

si R=0,999374 decimos que R es de 3 nueves (decimales)

.... de forma similar para probabilidades pequeñas:

si R=0,0043 decimos que R es de 2 ceros (decimales)

Formalmente

$$\#9_{10}(A) = -\log_{10}(1 - P(A))$$

$$\#0_{10}(A) = -\log_{10}(P(A))$$

Generalizando a otras bases: B

$$\#(B-1)_B(A) = -\log_B(1-P(A))$$

$$\#0_B(A) = -\log_B(P(A))$$

La oportunidad

... razón que forman las apuestas a favor de A, divididas entre las apuestas en contra de A cuando la ganancia esperada es cero.

En inglés "Odds".

Problemas terminológicos.

Dominio:

$$O(A) \in [0, \infty]$$

Suceso indiferente:
$$P(A) = \frac{1}{2} \Leftrightarrow O(A) = 1$$

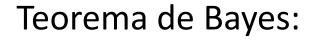
Relación directa con la P. Laplaciana

$$O(A) = \frac{P(A)}{1 - P(A)} = \frac{P(A)}{P(\overline{A})}$$

Relación inversa con la P. Laplaciana

$$P(A) = \frac{O(A)}{1 + O(A)} = \frac{1}{1 + O(\overline{A})}$$

Teorema de Bayes



Tablas de contingencia de Confiabilidad y Teorema de Bayes con Oportunidades

Las razones de oportunidades OR se calculan directamente a partir de las tablas de contingencia

	Artefactos operativos	Artefactos no operativos
Sometidos a radiación	8	23
No sometidos a radiación	31	11

$$\Leftrightarrow$$
 OR = $\frac{8/23}{31/11} = \frac{11 \cdot 8}{23 \cdot 31} = 0,12 < 1 \Rightarrow$ El factor disminuye la fiabilidad

Oportunidad a posteriori

$$O(A \mid B) = O(A) \cdot \frac{P(B \mid A)}{P(B \mid \overline{A})}$$

Oportunidad a priori

Relación de verosimilitudes

XVIII Congreso

de Confiabilidad El Logaritmo de la Oportunidad

La logOportunidad de un suceso: A, $LO_{_{\mathrm{B}}}(\mathrm{A})$, es el logaritmo en cierta base B de la oportunidad de A

$$LO_{B}(A) = \log_{B}(O(A)) = \log_{B}\left(\frac{P(A)}{1 - P(A)}\right)$$

Dominio:

 $LO(A) \in [-\infty, +\infty]$

Sucesos complementarios: $LO(A) = -LO(\overline{A})$

Suceso indiferente:

$$P(A) = \frac{1}{2} \Leftrightarrow LO(A) = 0$$

Relación con el número (decimal) de nueves o ceros

Para sucesos casi seguros: $LO_B(A) >> 0$

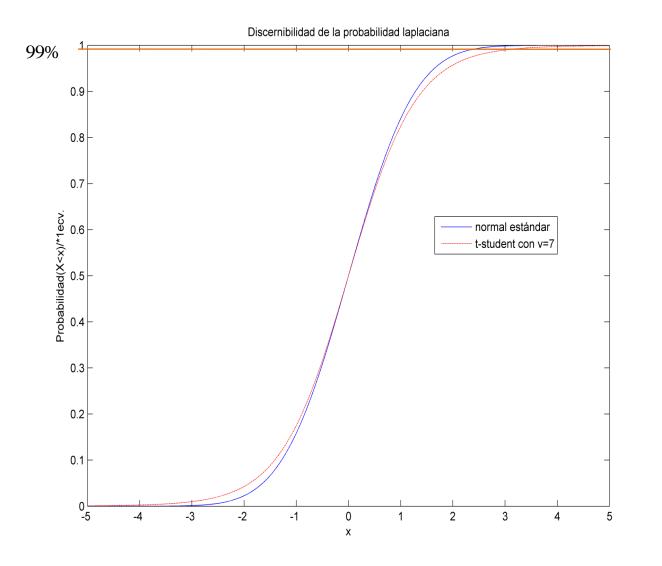
 $\#9_{10}(A) \approx LO_{10}(A)$

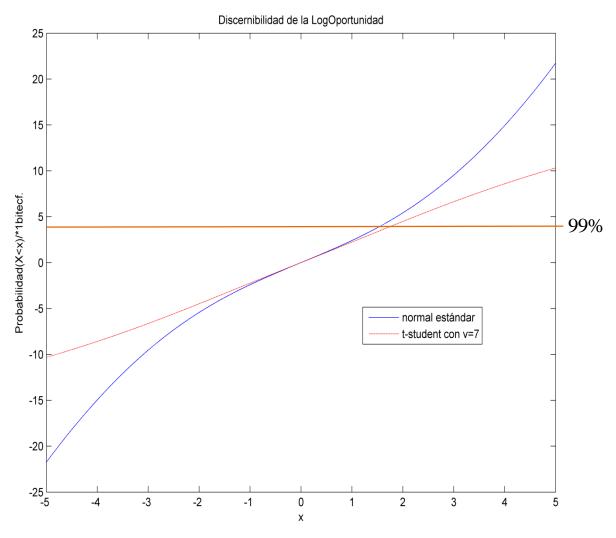
Dem. $\#9_{10}(A) = -\log_{10}(1 - P(A)) = \log_{10}(\frac{1}{1 - P(A)}) \approx \log_{10}(\frac{P(A)}{1 - P(A)}) = LO_{10}(A)$

En base B: $\#(B-1)_{R}(A) \approx LO_{R}(A)$

Para sucesos raros:

 $LO_{R}(A) \ll 0$


 $\#0_{10}(A) \approx -LO_{10}(A)$


Dem. $\#0_{10}(A) = -\log_{10}(P(A)) \approx -\log_{10}(\frac{P(A)}{1 - P(A)}) = -LO_{10}(A)$

 $\#0_R(A) \approx -LO_R(A)$

Discernibilidad de la LogOportunidad

Unidades formales de probabilidad

Motivación

- •Seguridad. Impedir la confusión de patrones expresivos .
- Atenuar la escasez de recursos de nomenclatura. O(F(A)), LO (R), etc
- •Etiquetar resultados y gráficas de forma consistente

Recursos

- •Propiedades formales del producto para referir un número a un patrón en una cantidad de magnitud
- •Uso de para referenciación formal no lineal

Ejemplos

$$l = 6.3m = 6.3metros = 6.3 \cdot 1metro \iff \frac{l}{1metro} = 6.3$$

$$T = 8,4^{\circ} C = 8,4 \bullet 1^{\circ} C \iff \frac{T}{\bullet 1^{\circ} C} = 8,4$$

$$\frac{T}{1K} = \frac{T}{\bullet 1^{\circ} C} + 273.15 \quad \text{versus} \quad \frac{T(K) = T(^{\circ} C) + 273.15}{T(K) = T(^{\circ} C) + 273.15}$$

Algebraicamente incorrecta

Propuesta de unidades formales de probabilidad

Medida	Nombre de unidad	Abreviatura
Probabilidad laplaciana	1 Laplace1 Éxito Cada Vez1 Succes Each Trial	1Lap 1ecv 1set
Oportunidad	1 Cardano 1 Éxito Cada Fallo 1 Success Each Fail	•1Card •1ecf •1sef
LogOportunidad	1 bit sobre ecf	•1bitecf
LogOportunidad	1 decibelio ecf	•1dBecf
LogOportunidad	1 nat sobre ecf	•1natecf
Número decimal de nueves	1 nueve decimal	• 1#9 ₁₀
Número decimal de ceros	1 cero decimal	• 1#O ₁₀

Algunos ejemplos de aplicación

•Relaciones entre alternativas expresivas de probabilidad

$$\frac{P(A)}{\bullet \text{ lecf}} = \frac{\frac{P(A)}{\text{lecv}}}{1 - \frac{P(A)}{\text{lecv}}} \qquad \frac{P(A)}{\bullet \text{ ldBecf}} = 10 \log_{10} \left(\frac{P(A)}{\bullet \text{ lecf}}\right)$$

•Relaciones entre descriptores de fiabilidad

$$\frac{F}{\bullet \text{ 1bitecf}} = -\frac{R}{\bullet \text{ 1bitecf}}$$

•Etiquetado de las gráficas de discernibilidad de esta presentación

MUCHAS GRACIAS POR SU ATENCIÓN

RUEGOS Y PREGUNTAS

