

FIABILIDAD DE LEDS AZULES

E. Nogueira, N. Núñez, M. Vázquez, J. Ochoa y P. Juarranz E.U.I.T. de Telecomunicación-Universidad Politécnica Madrid

INTRODUCCIÓN

- Los LED se caracterizan por presentar una larga vida útil siempre y cuando las condiciones de funcionamiento sean las nominales.
- No obstante con el paso del tiempo, la potencia lumínica, o la longitud de onda de la luz emitida, pueden ir degradándose perdiendo de esta forma parte de la funcionalidad en la aplicación en la que se estén utilizando.

INTRODUCCIÓN

- En este estudio se han realizado siete ensayos en diferentes condiciones de temperatura humedad y corriente, que han permitido realizar modelos de vida en temperatura, humedad y corriente, para fallos catastróficos y por degradación.
- Se han utilizado modelos de Arrhenius para la temperatura, Peck para la humedad y potencia inversa para la corriente.

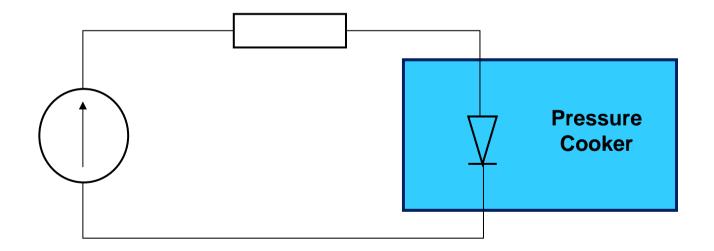
MUESTRAS

- LEDs azules comerciales, la máxima potencia se presenta para una longitud de onda de 470 nm (azul).
- Fabricados con InGaN, el encapsulado es T-1 ¾ (5 mm), el material del encapsulado es de resina epoxídica.
- La aplicación básica de estos LEDs es para señalización.

ENSAYOS

 Siete ensayos a diferentes temperaturas, humedades y corrientes, cada ensayo se compone de 15 muestras.

Ensayo	Temperatura ℃	Humedad %RH	Corriente mA	Duración horas
1	130	70	20	300
2	130	85	20	220
3	130	55	20	940
4	140	70	20	200
5	120	70	20	900
6	130	70	30	500
7	130	70	10	420



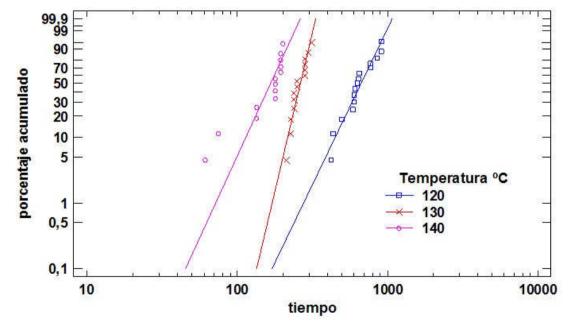
ENSAYOS

 Esquema de polarización de los LEDs durante el ensayo

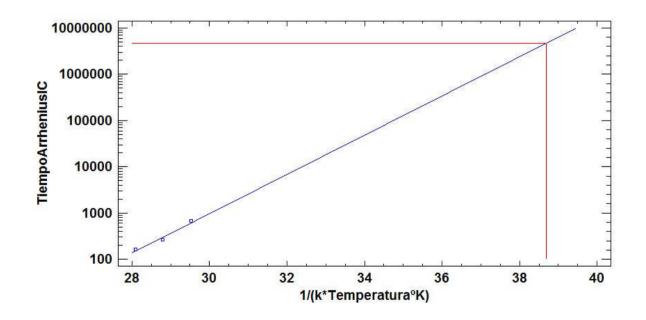
ANÁLISIS DE FALLOS

- Fallo catastrófico: se definen como una pérdida total de la funcionalidad del dispositivo. Fallo por circuito abierto por penetración de humedad por el terminal de ánodo.
- Fallos por degradación, de la intensidad luminosa.

Modelo de vida para temperatura: modelo Arrhenius-Weibull

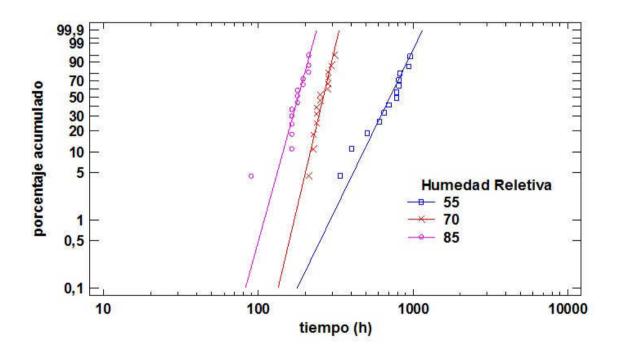

Temperatura (°C)	Tamaño Muestra	Número de Fallos	Factor de Forma (6)	Factor de Escala (h)	Mediana (horas)
120	15	15	4,80	718,9	666,2
130	15	14	9,82	271,6	261,7
140	15	13	5,03	178,3	165,7

 Gráfica de Weibull para humedad constante del 70%RH y corriente de 20 mA

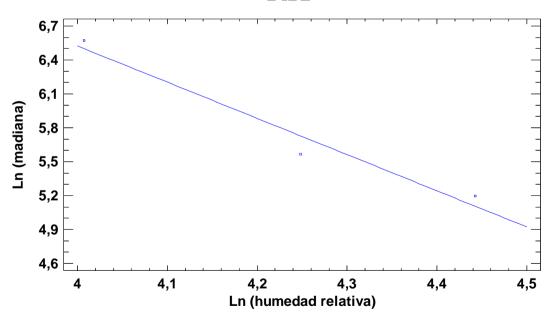


• Humedad: 70%RH y corriente de 20 mA $t_{50\%} = Ae^{-Ea/kT} = 1,92 \cdot 10^{-10} \cdot e^{0,97/kT}$

Modelo de vida para humedad: modelo Peck-Weibull


Humedad (%HR)	Tamaño Muestra	Númer o de Fallos	Factor de Forma (β)	Factor de Escala (h)	Mediana (horas)
55	15	13	4,72	772,7	715,0
70	15	14	9,82	271,6	261,7
85	15	14	8,34	188,6	180,5

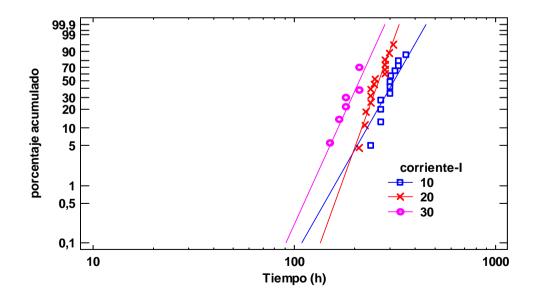
 Gráfica de Weibull para temperatura constante de 130°C y corriente de 20 mA.



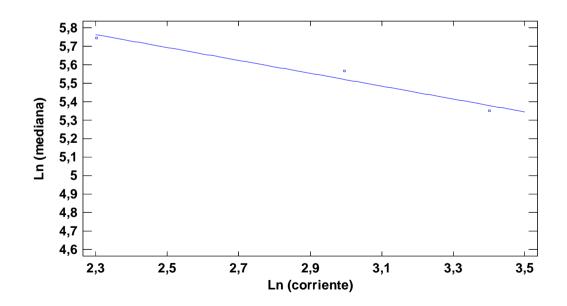
• Temperatura 130°C y corriente de 20 mA.

$$t_{50\%} = \frac{248.263.192}{RH^{3,24}}$$

Modelo de vida para corriente: modelo Potencia-Weibull


Corriente mA	Tamaño Muestra	Númer o de Fallos	Factor de Forma (β)	Factor de Escala (h)	Mediana (horas)
10	15	12	6,21	331,6	312,6
20	15	14	9,82	271,6	261,7
30	12	6	7,84	220,6	210,6

 Gráfica de Weibull para temperatura constante de 130°C y humedad relativa del 70%.



Temperatura 130°C, humedad relativa
70%.

$$t_{50\%} = \frac{706}{I^{0.35}}$$

Modelo combinado de temperatura, humedad y corriente

$$t_{50\%} = 5,25 \cdot 10^{-04} \cdot e^{0,97/kT} \cdot \frac{1}{RH^{3,24}} \cdot \frac{1}{I^{0,35}}$$

Para condiciones de 30 mA, 70%RH y T = 47 °C $t_{50\%}$ = 36 años

CONCLUSIONES

- Se ha desarrollado un modelo de vida para LEDs azules que permite calcular la mediana en función de los tres principales parámetros de utilización: temperatura, humedad y corriente.
- Se ha comprobado que el modelo de Arrhenius es adecuado para describir el comportamiento en temperatura, el de Peck para la humedad y el de potencia inversa para la corriente.